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The authors present a method o f  reducing inverse problems of  recovery of boundary heat fluxes by 
means of  data of  integral or differential temperature measurements on the boundary to direct in- 
itial/boundary-value problems. 

In the present work consideration is given to two problems of identification of unsteady heat fluxes on 
part of the boundary of a body by using data of integral or differential temperature measurements on the 
boundary. It is assumed that the heat transfer is described by the two-dimensional unsteady heat-conduction 
equation. The indicated problems belong to inverse heat-conduction problems. We show that they are reduced 
to direct initial/boundary-value problems for the heat-conduction equation with nonclassical (integrodifferential) 
boundary conditions in the case of integral temperature measurements and classical boundary conditions in the 
case of differential measurements. The suggested approach of reduction of the inverse problems to direct ones 
is based on the works [1-3]. 

1. Heat-Flux Recovery by Means of Data of  Integral Temperature Measurement. In the two-di- 
mensional region ~ = {(x, y): 0 < x  < a, 0 <y  < b} we will consider the parabolic equation 

c ( x , y ) u t = d i v ( ~ ( x , y ) g r a d u  ) ,  u = u ( x , y , t ) ,  t > O ,  (1) 

with the initial and boundary conditions 

u ( x , y , O ) = u o ( x , y ) ,  Uy(X ,O, t )=ux(O,y , t )=Ux(a ,y , t )=O,  (2), 

- ~, (x, b)  Uy (x, b,  t) = q (x, t), (3) 

where c, ~,, q are prescribed sufficiently smooth functions (c > 0, ~, > 0). 
The direct problem is formulated in the form (1)-(3). Consideration will be given to the inverse prob- 

lem in which in addition to u(x, y, t) the right-hand side q(x, t) of boundary condition (3) is unknown. We will 
assume that q(x, t) can be represented as 

q (x, t) = 1"1 (t) ~ (x), (4) 

where the function ~(x) is prescribed, while the time-dependent boundary source, i.e., the function aq(t) in rep- 
resentation (4), is unknown. This dependence is recovered using additional information, i.e., the function t0(t): 

a 

to (t) = J p (s) u (s, b, t) ds . 
(5) 
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In heat-transfer problems the function rl(t) has the meaning of  the t ime-dependent ampli tude o f  the 
boundary heat f lux q(x, t), while to(t) is the averaged temperature with the weight  function p(x) on the surface 
y = b. Here, the inverse problem (1)-(5) can be interpreted either as the prob lem of  identification o f  the heat 
flux q(x, t) or as the problem of  programmed control of  the averaged temperature  (5), for which t0(t) is the 
specified program.  

Now we will give some examples  of  the weight function p(x). 
1) If 

t 1 
x ~  [Xo, X l l c _ [ O , a ] ,  

I- " 

p ( x ) =  xt  - x°  

l 0 ,  x ~  [x0, x 0 ,  

then to(t) is the average temperature at the time t in the region y = b, x ~ [x0, xl]. 

2) If  p(x) = 8 ( x -  xo) (0 < xo < a) is the Dirac function, then to(t) is the temperature at the point  (x0, b). 
3) Let  e <  max{x0, a - x o } .  We set 

e 2 (e  - x o + x ) ,  x ~ Ix o - e, x o] 

p (x) = PE (x) = e -2 (e + x 0 - x ) ,  x ~ ]Xo, x o + e] 

0 ,  x ~ ]x 0 - ~, x 0 + e[ 

The sequence of functions pe(x) (e ~ 0) can be considered as a regularization of  the general ized func- 
tion &x -x0) .  

We t ransform the inverse problem (1)-(5) into a direct one for  Eq. (1) with integrodifferential boundary  
conditions. 

Let 

£1 

b (x) . -  ~ ( x )  k := f b 2 (x, b) ' (s) ds . 
o 

Equation (3), where q(x, t) has the form of (4), is equivalent to the sys tem of  equations 

a 

kuy (x, b, t) - b (x) f b (s) Uy (s, b, t) ds = O, 
0 

(6) 

a 

krl (t) + ~ b (s) Uy (s, b, t) ds = 0 .  (7) 

0 

Indeed, (3) obviously follows f rom (6), (7). To prove the reverse statement,  we will integrate the equality 

b (x) Ry (x, b, t) + b 2 (x) ~ (t) = 0 

equivalent to (3) with respect to x within the limits 0 < x < a. As a result, we arrive at equality (7). N o w  we 
will express the function in (7) as 

a 

I~ ( t ) = ~  f b (s) Uy (S, b, t) ds . (8) 
0 
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After substitution of (8) into (3), we obtain (6). 
Thus, the sought function rl(t) is determined, according to (8), in terms of the function u(x, y, t), which, 

in turn, is the solution of parabolic equation (1) with integrodifferential initial/boundary conditions (2), (5), and 
(6). 

Next, we note that the following equality follows from conditions (5) and (6): 

kuy (x, b, t) - b (x) b (S) Uy (S, b, t) ds + S p  (s) u (s, b, t) ds = b (x) q) ( t ) .  
0 (9) 

Multiplying (9) by b(x) and integrating the obtained relation with respect to x within the limits 
0 < x < a, we obtain equality (5). Moreover, from (5) and (9), relation (6) follows. We have shown that the 
system of boundary conditions (5) and (6) is equivalent to the single boundary condition (9). 

Finally, we can state that the pair (rl(t), u(x, y, t)), i.e., the solution of the inverse problem (1)-(5), is 
determined by formula (8) and the direct initial/boundary-value problem (1), (2), and (9). 

We note that if we set p(x) = ~ ( x -  Xo), then the boundary condition (9) acquires the form 

/ / kuy (X, b, t) -- b (x) ~ b (s) Uy (s, b, t) ds + u (x o, b, t) = b (x) ~p (t) . 
0 

The system of equations (l), (2), and (9) is an initial/boundary-value problem with nonclassical bound- 
ary conditions. Such problems appear in different fields of science and technology, and beginning with the 
well-known studies by V. A. Steklov and A. N. Tikhonov, they have attracted the interest of many authors 
(see, e.g., [4-7]). In particular, from the works [6, 7] it follows that if the function p(x) has the form 

k 

P ( x ) = P o ( X ) +  Z Pi~(X--Xi) '  XiE ]O,a[ ,  (10) 
i=1 

where po(x) is a piecewise-continuous function, po(x) > 0, b(x) > 0 Vx ~ [0, a], Pi >- 0 Vi  ~ { 1 . . . . .  k}, then the 
solution u(x, y, t) of system (1), (2), (9) depends continuously (relative to the metric of the space of continuous 
functions) on the initial and boundary data. The existence and uniqueness of  the solution of the inverse prob- 
lem (1)-(5) and (10) follow from this. 

2. Heat-Flux Recovery by Means of Data of Differential Temperature Measurement. We consider 
the initial/boundary-value problem 

ut=u=+u =, u(x,z,O)=uo(x,z), x ~ ( - ~ , o o ) ,  z~[0,1] ,  (11) 

u z (x, 0, t) = 0 ,  (12) 

-Uz (X ,  l , t ) = q ( x , t ) .  (13) 

The inverse problem involves determination of the heat flux q(x, 0 on the surface z = 1 from data of 
temperature-difference measurements 

u(x ,  1, t ) - u ( x ,  O , t ) = y ( x , t )  (14) 

(the differential-thermocouple method [8]). 
From (11)-(14) it directly follows that the solution (q(x, t), u(x, z, t)) of the inverse problem is deter- 

mined by formula (13) and the direct initial/boundary-value problem (11), (12), and (14) with nonclassical 
boundary condition (14). The spectral boundary-value problem 
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~tK=U~x+~zz, ~(x, 0 ) - ~ ( x ,  1 ) = 0 ,  Uz(X,O)=O,  

that corresponds to (11), (12), and (14) is not self-conjugate. This fact explains the difficulties encountered in 
analytical and numerical solution of the system (11), (12), and (14). 

In the one-dimensional case (u = u(z, 0), the initial/boundary-value problem (11), (12), and (14) was 
studied in [1, 9]. In [9] it was shown that in this case the Green function of  the boundary-value problem (11), 
(12), and (14) can be constructed by the method of separation of variables. In [1], an alternative approach was 
suggested that reduces construction of  the Green function to successive solution of classical initial/boundary- 
value problems. Following this approach, we can represent the solution u(x, z, t) of Eq. (11) in the form 

=u ( x , z , t ) + u - ( x , Z , t ) ,  u (x , z , t )  + 

u + (x ,  z ,  t )  : 
u (x ,  z ,  t)  + u (x ,  1 - z ,  t )  

u (x, z, t) - u (x, 1 - z, t) 
u - ( x , z , t ) -  2 

(15) 

Substituting (15) into (11)-(14) and considering that u = 0  ¢=~ {u + =0 ,  u - -  = 0}, we obtain the system of  equa- 
tions u? = ,x~" + +',rz, + u+(x, z, O) = u-~(x, z), -2u.+(x,. 1, t) = q(x, t) for the function u+(x, z, t) and the system of 
equations 

u-~=u~ +uzz ' u - ( x , z , O ) = u o ( X , Z ) ,  (16) 

2u- (x, 1, t) = y  (x, t) (17) 

for the function u-(x, z, t). Here, it is obvious that the following equality is fulfilled: 

q (x, t) = - 2u x (x, 1, t ) .  (18) 

The system (16) and (17) is equivalent to the classical initial/boundary-value problem 

Vt:VxxarV=,  V ( X , z , O ) : U o ( X , Z )  " (19) 

2v (x, 0, t) = - y  (x, t) ,  2v (x, 1, t) = y (x, t ) .  (20) 

Since here v(x, z, t) = u-(x, z, t), from (18) it follows that 

q (x, t) = - 2v z (x, 1, t ) .  (21) 

Thus, the solution q(x, t) of the inverse problem is determined by formula (21), where v(x, z, t) is the 
solution of the classical initial/boundary-value problem (19) and (20). Let G(x, z, ~, 0, t) be the Green function 
of the problem (19) and (20). Then the solution of the inverse problem is 

q(x, 0 = -  ~ a (x, z, ~, O, t) uo (~, O) d{  d e -  
~ 0  

- f  [. ( G e ( x , z , ~ , O , t - s ) - G e ( x , z , ~ , l , t - s ) ) Y ( ~ , s ) d ~ d s  . 
0 ~  
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